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Abstract

In this paper propagation of magnetic-thermoelastic plane waves in an initially unstressed, homogeneous isotropic,

conducting plate, rotating about the normal to its faces with uniform angular velocity, under the action of uniform

magnetic field has been investigated. The generalized theory of thermoelasticity is employed, by assuming electrical

behavior as quasi-static and the mechanical behavior as dynamic, to study the problem. The secular equations for both

symmetric and skew symmetric waves have been obtained. The magneto-elastic shear horizontal (SH) modes of wave

propagation gets decoupled from rest of the motion here, however it may not be in general possible if the rotation took

place in an arbitrary direction. These waves propagate without the influence of temperature change and thermal relaxation

time. At short wavelength limits, the secular equations for symmetric and skew symmetric modes reduce to Rayleigh

surface wave frequency equation. Thin plate results are also deduced. Finally, the dispersion curves are computed and

represented graphically for various modes of wave propagation in different theories of thermoelasticity. The amplitudes of

displacement, perturbed magnetic field and temperature change are also obtained analytically, computed numerically at

the end and plotted graphically. The result in case of non-rotating media, elastokinetics, magneto-elasticity and coupled

magneto-elasticity has also been deduced as special cases at appropriate stages of this work.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The interaction between thermal and strain fields in a conducting thermoelastic plate gives rise to the theory
of dynamic coupled magneto-thermoelasticity. Increasing attention is being devoted to this theory due to its
many engineering applications in the fields of magnetic storage elements, magnetic structural elements,
biotechnology and corresponding measurement techniques of magneto-elasticity. The theory of thermo-
elasticity and thermoelastic waves in solids is well established, see Refs. [1–4]. The governing field equations in
classical dynamic coupled thermoelasticity (CT) are wave-type (hyperbolic) equations of motion and a
diffusion-type (parabolic) equation of heat conduction. Therefore it is seen that part of the solution of the
energy equation extends to infinity, implying that if a homogeneous isotropic elastic medium is subjected to
thermal or mechanical disturbances the effect of temperature and displacement fields are felt at an infinite
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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distance from the source of disturbance. This shows that part of the disturbance has an infinite velocity of
propagation, which is physically impossible. With this drawback in mind, some researchers, such as Lord and
Shulman [5] and Green and Lindsay [6], modified Fourier law and constitutive relations so as to get a
hyperbolic equation for heat conduction. These works include the time needed for the acceleration of heat flow
and take into account the coupling between temperature and strain fields for isotropic materials. Dhaliwal and
Singh [7] carried out a detailed survey and described various problems in the field.

Chand et al. [8] presented an investigation on the distribution of deformation stresses and magnetic field in a
uniformly rotating homogeneous isotropic, thermally and electrically conducting, elastic half-space. Dhaliwal
and Saxena [9] investigated the generalized magneto-thermoelastic waves in an infinite elastic solid with a
cylindrical cavity. Ezzat [10] studied the generation of generalized magneto-thermoelastic waves by a thermal
shock in a perfectly conducting half-space. Paul and Muthiyalu [11] studied magneto-thermoelastic free
vibrations in an infinite plate and verified their results numerically for aluminum alloy 24S-T4. Paul and
Narasimhan [12] studied the vibrations of a thermoelastic infinite plate in a large magnetic field, in the context
of coupled theory of thermoelasticity. Sharma and Chand [13] studied the transient magneto-thermoelastic
waves in the context of generalized theories of thermoelasticity developed by Lord and Shulman [5], and
Green and Lindsay [6]. Sharma and Chand [14] investigated the distribution of deformation, temperature field,
perturbed magnetic field and stresses in vacuum as well as in elastic medium under rotation due to thermal
shock acting on its boundary. Wang and Dai [15] studied the magneto thermodynamic stress and perturbation
of magnetic field vector in an orthotropic thermoelastic cylinder. Sharma and Pal [16] studied the
Rayleigh–Lamb waves in magneto-thermoelastic homogeneous isotropic plates. Chandrasekharaiah [17]
investigated the propagation of magneto-elastic transverse surface waves in an internal stratum. Dhaliwal and
Sherief [18] extended the theory of generalized thermoelasticity developed by Lord and Shulman [5] to
anisotropic elastic bodies. Nayfeh and Nasser [19] discussed the propagation of surface waves in homogeneous
isotropic solids in the context of coupled and generalized thermoelastic bodies. Noda et al. [20] derived a
formulation of generalized thermoelasticity for one-dimensional problems. Sherief and Ezzat [21] investigated
the thermal shock problem in magneto-thermoelasticity with thermal relaxation.

The effect of rotation on elastic waves, both partial and surface, has been studied by many authors [22–24].
Ting [25] investigated the interfacial waves in a rotating anisotropic elastic half-space by extending the Stroh
[26] formalism. He obtained explicit expressions of the polarization vector and the secular equation for
monoclinic material half-space rotating about the normal to the plane of symmetry. Fang et al. [27]
investigated the effect of rotation on surface acoustic waves in a piezoelectric half-space. It is shown that a
piezoelectric material may not permit propagation of more than one rotation-perturbed surface wave even if
both Rayleigh and Bleustein–Gulyaev waves are permissible in the absence of rotation. Fang et al. [28]
investigated the effect of rotation on the characteristics of waves propagating in a piezoelectric plate. The
rotation sensitivity of the wave dispersion relations for polarized ceramic plates was analyzed in details in the
context of gyroscope applications. The effect of rotation on frequency shift in case of long and short waves
have also been explored. Zhou and Jiang [29] studied the effects of Coriolis force and centrifugal force on
acoustic waves in a piezoelectric half-space.

The present paper deals with the study of magneto-thermoelastic waves in a rotating, homogeneous
isotropic, conducting plate in the context of generalized theories of thermoelasticity [5,6]. The plate is assumed
to rotate about the normal to its faces with uniform angular velocity which allows the decoupling of magneto-
elastic SH modes. The secular equations for symmetric and skew symmetric modes have been derived and
discussed. The short wavelength and thin plate results have also been deduced and discussed. The analytical
expressions for amplitudes of displacement, perturbed magnetic field and temperature change have been
derived. The results obtained theoretically have been computed numerically and presented graphically for
carbon steel [14] material plate.

2. Formulation of the problem

We consider an infinite homogeneous isotropic, electrically and thermally conducting, plate of thickness 2d
initially at uniform temperature T0 in contact with the vacuum. We take the origin of the coordinate system
(x1, x2, x3) on the middle surface of the plate with x3 axis along the normal of the plate. The x1�x3 plane is



ARTICLE IN PRESS
J.N. Sharma, M.D. Thakur / Journal of Sound and Vibration 296 (2006) 871–887 873
choosen to coincide with the middle surface and x2-axis is taken along the thickness, as shown in Geometry
below.

The surfaces x2 ¼7d are assumed to be stress free, insulated or isothermal boundaries. In addition to this we also
assume that the electromagnetic field is quasi-static. We assume that plate is rotating about the normal to its faces
with uniform angular speed X ¼ 0; 0;Oð Þ and initial magnetic fieldH0 is acting along x1-direction which vanishes at
the boundaries. When the medium undergoes dynamical deformation, the two additional terms namely,
(i)
 the time-dependent part of the centripetal acceleration X� ðX� uÞ and

(ii)
 the Coriolis acceleration 2ðX� _uÞ, where u is the displacement vector,
which do not appear in case of non-rotating medium will also appear in the governing equations here.
The basic governing equations of generalized isotropic thermoelasticity and electromagnetic interactions, in

the absence of body forces and heat sources are:

lþ mð Þrr:uþ mr2uþ m0se�H0 þ m20s _u:H0ð ÞH0 � m20sH
2
0 _u� b�r T þ d2kt1 _T

� �
¼ r €uþX�X� uþ 2X� _uð Þ, ð1Þ

Kr2T � rCe
_T þ t0 €T
� �

¼ T0b
� _eþ t0d1k €eð Þ, (2)

r � e ¼ 0; r � h ¼ s eþ m0 _u�H0

� �
; r:h ¼ 0 (3)

where H0 ¼ (H, 0, 0), u(x1, x2, x3, t) ¼ (u1, u2, u3) is the displacement vector, T(x1, x2, x3, t) is temperature
change, X ¼ (0, 0,O) is the angular velocity of rotation. Here e and h are the perturbations in the electric and
magnetic fields, s is the electrical conductivity, m0 is magnetic permeability, l, m are Lame’s parameters, r and
Ce are, respectively, the density and specific heat at constant strain; K is the thermal conductivity, e is
dilatation, and b* ¼ (3l+2m)at, at being linear thermal expansion. Here dlk is Kronecker delta in which k ¼ 1,
for Lord–Shulman (LS) theory and k ¼ 2 corresponds to Green–Lindsay (GL) theory of thermoelasticity.

We define the quantities:

xj ¼ o�xj=c1; t0 ¼ o�t; u0j ¼ ro�c1uj=bT0; T 0 ¼ T=T0,

h0j ¼ hj=H; e0j ¼ ej=m0c1H; t00 ¼ o�t0; t01 ¼ o�t1; d 0 ¼ o�d=c1,

eT ¼ b�2T0=rce lþ 2mð Þ; en ¼ rce=b
�; eH ¼ $

�=m0sc21; c22 ¼ m=r,

RH ¼ m0H
2=rc21; o� ¼ ce lþ 2mð Þ=k; c21 ¼ lþ 2m=r; O0 ¼

O
o
, (4)

where c1,c2 are, respectively, the longitudinal and shear wave velocities in the solid plate, o� is characteristic
frequency of the solid plate, eT is thermoelastic coupling constant, eH is thermoelastic-deformation and
electromagnetic coupling constant, RH is magnetic pressure number. The effect of magnetic field is to increase
the thermoelastic coupling constant by an amount (1+RH/eH). Upon introducing the quantities (4) in Eqs.
(1)–(3), the non-dimensional basic governing equations of motion and heat conduction, are given by

u1;11 þ ð1� d2Þu2;12 þ d2u1;22 � €u1 þ O2u1 þ 2O _u2 ¼ ðT þ t1d2k
_TÞ;1, (5)
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ð1� d2Þu1;12 þ u2;22 þ d2u2;11 � €u2 �
RH

eH

_u2 � 2O _u1 þ O2u2 ¼ ðT þ t1d2k
_TÞ;2, (6)

d2ðu3;11 þ u3;22Þ �
RH

eHeTeV

e2 �
RH

eH

_u3 � €u3 ¼ 0, (7)

T ;11 þ T ;22 � ð _T þ t0 €TÞ ¼ eT _u1;1 þ _u2;2 þ d1kt0ð €u1;1 þ €u2;2Þ
� �

, (8)

e2;1 � e1;2 ¼ 0; e1 � eHh3;2 ¼ 0; e2 þ eTeV _u3 þ eHh3;1 ¼ 0;

eTeV _u2 þ eH ðh2;1 � h1;2Þ ¼ 0; h1;1 þ h2;2 ¼ 0:
(9)

Here dashes have been suppressed for convenience. The comma notation is used for spatial derivates and
superposed dot represents time differentiation. The non-dimensional boundary conditions on the plate
surfaces x2 ¼7d are expressed as

u1;2 þ u2;1 ¼ 0; u2;2 þ 1� 2d2
� �

u1;1 � R�h1 � T þ d2K t1Tð Þ ¼ 0;

T ;2 þH�T ¼ 0; h3 ¼ 0; u3;2 ¼ 0; h1 � iRH=R̄Hh2 ¼ 0;
(10)

where R� ¼ m0 � m̄0
� �

H2=b�T0, R̄H ¼ m̄0H
2=rc21 and m̄0 is the permeability of the free space and H* is the

surface heat transfer coefficient of the medium. Here H*-0 corresponds to thermally insulated boundaries of
the plate and H*-N refers to isothermal one.
3. Solution of the problem

In order to solve the problem we assume the solution of the form

ðuj ; ej ; hj ;TÞ ¼ ūj ; ēj ; h̄j ;T
� �

exp ix x1 þmx2 � ctð Þ
� �

, (11)

where c ¼ o/x is the phase velocity, o being the circular frequency and x is the wavenumber . Upon adopting
the procedure and approach of Sharma and Pal [11], after lengthy but straight forward algebraic reductions
and manipulations, we obtain

u1 ¼
X4
q¼1

Aqcq � Bqsq

� �
exp ixðx1 � ct
� �

, (12)

u2 ¼
X4
q¼1

iV2q Aqsq þ Bqcq

� �
exp ixðx1 � ct
� �

, (13)

h1 ¼
X4
q¼1

V3q Aqcq � Bqsq

� �
exp ixðx1 � ct
� �

, (14)

h2 ¼
X4
q¼1

iV4q Aqsq þ Bqcq

� �
exp ixðx1 � ct
� �

, (15)

T ¼
X4
q¼1

V 5q Aqcq � Bqsq

� �
exp ixðx1 � ct
� �

, (16)

u3 ¼
X6
q¼5

Aqcq � Bqsq

� �
exp ixðx1 � ct
� �

, (17)
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e2 ¼
X6
q¼5

iV7q Aqcq þ Bqsq

� �
exp ixðx1 � ct
� �

, (18)

e1 ¼
X6
q¼5

V 8q Aqsq � Bqcq

� �
exp ixðx1 � ct
� �

, (19)

h3 ¼
X6
q¼5

iV9q Aqcq þ Bqsq

� �
exp ixðx1 � ct
� �

, (20)

where

V2q ¼

mq m2
q � b2

� �
=ðm2

q � b2H Þ; q ¼ 1; 2; 4;

� d2m2
q � a2 þ t1cV 5q

h i
=mqð1� d2Þ; q ¼ 3;

8><
>:

V3q ¼ �mqV 4q; V34 ¼ 0;

V 4q ¼
c2T2V

2H ð1þm2
qÞ

V2q; q ¼ 1; 2; 3; V 44 ¼ 0, (21)

V 5q ¼

� d2m2
q � a2 þmqV2qð1� d2Þ

h i
=t1c; q ¼ 1; 2; 4;

� ðd2m2
q � a2Þðm2

q � d2b2H Þ �m2
qð1� d2Þ2

h i
=d2t1cðm2

q � b2H Þ; q ¼ 3;

8><
>:

V7q ¼ �x
2eHeT eVd

2 m2
q � b2H

� �
=RH ; q ¼ 5; 6; V 8q ¼ V7q=mq; q ¼ 5; 6;

V 9q ¼ V7q=ixeHm2
q; q ¼ 5; 6;

(22)

a2 ¼ c2 1þ G2
� �

� 1; b2 ¼
c2

d2
1þ G2
� �

� 1; b2H ¼
c2

d2
1þ io�1

RH

eH

þ G2

	 

� 1;

t1 ¼ t1d2kio�1; G2 ¼
O2

o2
; sq ¼ sin xmqx2

� �
; cq ¼ cos xmqx2

� �
:

In Eqs. (12)–(22) the characteristic roots m2
q ðq ¼ 1; 2; 3; 4; 5; 6Þ are given by

m2
i ¼ a2

i c2 � 1
� �

; i ¼ 1; 2; 3; m2
4 ¼ �1; m2

5;6 ¼
1

2

c2

d2
�

ffiffiffiffiffi
c2

d2

s
� 4b2H

2
4

3
5� 1, (23)

where

a2
1 þ a2

2 þ a2
3 ¼ 1þ G2

� �
1þ

1

d2

	 

þ t0 � iot1t00eT þ

1

d2
io�1

RH

eH

þ G2

	 

;

P
a2
1a

2
2 ¼ t0 1þ G2

� �
þ

1þ t0 þ G2

d2
�

iot1t00
d2

eT þ io�1RH=eH þ G2
� � 1þ t0 þ G2

d2

� 


a2
1a

2
2a2

3 ¼
t0
d2

1þ 1þ G2
� �

io�1RH=eH þ G2
� �� �

;

t0 ¼ t0 þ io�1; t1 ¼ t1d2k þ io�1; t00 ¼ t0d1k þ io�1:

(24)
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In the absence of rotation (G ¼ 0), we have

a2
1 þ a2

2 þ a2
3 ¼ 1þ

1

d2
þ t0 � iot1t00eT þ

io�1

d2
RH

eH

;

P
a2
1a

2
2 ¼ t0 þ

1þ t0
d2
�

iot1t00
d2

eT þ
io�1RH

eH

1þ t0
d2

	 

;

a2
1a2

2a
2
3 ¼

t0
d2

1þ
io�1RH

eH

	 

:

(25)

In the absence of magnetic field (RH-0), Eqs. (25) reduce to

a2
1 þ a2

2 ¼ 1þ t0 � iot1t
=
0eT ; a2

1a2
2 ¼ t0; a2

3 ¼
1

d2
. (26)

In this case the shear vertical (SV) wave also gets decoupled from rest of the motion and the characteristic
roots correspond to their counterparts in generalized thermoelasticity [30].
4. Derivation of secular equation

Invoking the boundary conditions (10) at the surfaces x2 ¼7d of the plate and using solutions (12)–(20) we
obtain a system of 12 simultaneous linear equations in each case which has a non-trivial solution if the
determinant of the coefficients of amplitudes A1;A2;A3;A4;A5;A6;A1;B2;B3;B4;B5;B6½ �T vanishes. This, after
applying lengthy algebraic reductions and manipulations, leads to the following secular equations for a stress
free, thermally insulated and isothermal plate:

T5

T6
¼

m6V 95

m5V 96

� 
�1
, (27)

D11 D12 D13 D14

D21T�11 D22T�12 D23T�13 D24T�14

D31 D32 D33 0

D41 D42 D43 D44

���������

���������
¼ �H�

D11 D12 D13 D14

D21T�11 D22T�12 D23T�13 D24T�14

D31 D32 D33 0

V 51T�11 V52T�12 V 53T�13 V54T�14

����������

����������
, (28)

where D1q ¼ mqV 2q þ 1� 2d2 �
R�V3q

ix
þ t1cV 5q;

D2q ¼ mq þ V 2q; D3q ¼ V 3qT�1q þ i
RH

R̄H

V4q; D4q ¼ mqV5q (29)

and Tq ¼ tan xmqd
� �

; q ¼ 1; 2; 3; 4:
Here H*-N refers to isothermal boundaries of the plate and H*-0 corresponds to thermally insulated

boundaries of the plate. Here the superscript +1 corresponds to skew- symmetric and �1 to that of symmetric
modes of wave propagation in the plate. The Eqs. (27) and (28) are the secular equations for the propagation
of modified guided magneto-thermoelastic. We refer such waves as magneto-thermoelastic plate waves rather
than lamb waves, whose properties were firstly derived by Lamb in 1917 for isotropic solids in elastokinetics.
The secular Eqs. (28) govern the symmetric and skew symmetric motion of the plate with stress free thermally
insulated isothermal boundaries and Eq. (27) is the secular equation of decoupled magneto-elastic shear
horizontal (SH) modes of wave propagation in the plate. These modes are not influenced and affected by
thermal variations and thermal relaxation times as expected.

The secular equation (28) in case of isothermal and thermally insulated plate, respectively, become

T1

T3

� 
�1
�

D22G2

D21G1

T2

T3

� 
�1
�

D24G4

D21G1

T4

T3

� 
�1
¼
�D23G3

D21G1
, (30)
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T1

T3

� 
�1
�

D12G02
D11G01

T2

T3

� 
�1
�

D14G04
D11G01

T4

T3

� 
�1
¼ �

D13G03
D11G01

, (31)

where

G1 ¼ D33T�13 D12V 54 �D14V 52ð Þ �D32T�12 D13V 54 �D14V 53ð Þ,

G2 ¼ D33T�13 D11V 54 �D14V 51ð Þ �D31T�11 D13V 54 �D14V 53ð Þ,

G3 ¼ D32T�12 D11V 54 �D14V 51ð Þ �D31T�11 D12V 54 �D14V 52ð Þ,

G4 ¼ D32T�12 D12V 53 �D13V 51ð Þ �D31T�11 D12V 53 �D13V 52ð Þ þD33T�13 D12V51 �D11V52ð Þ. ð32Þ

Here G0q can be obtained from Gq by replacing V5q with mqV5q and D1q with D2q, q ¼ 1,2,3,4.
If we write

c�1 ¼ V�1 þ io�1Q, (33)

so that x ¼ R+iQ, where R ¼ o/V and V, Q are real numbers. Also the characteristic roots mq, q ¼ 1,2,3 are,
in general complex, and hence we assume that mq ¼ aq+ibq, so that the exponent in the plane wave solutions
(11) becomes

�R
Q

R
x1 þmI

qx2

� �
� iR x1 �mR

q x2 � Vt
n o

,

where mR
q ¼ aq � bqQ=R, mI

q ¼ bq þ aqQ=R. This shows that V is the propagation velocity and Q is the
attenuation coefficient of the wave. Upon using representation (33) in secular equations (30) and (31), the
values of propagation speed V and attenuation coefficient Q for different modes of wave propagation can be
obtained. Since c0 ¼ c=c1 is the non-dimensional complex phase velocity, so V 0 ¼ V=c1 and Q0 ¼ c1Q are the
non-dimensional phase speed and attenuation coefficient, respectively. Here dashes have been omitted for
convenience.

5. Particular cases of secular equation

In this section, we deduce some particular forms of the secular equation in various theories of
thermoelasticity and magneto-elasticity.

5.1. Coupled magneto-elasticity

In case of CT the thermal relaxation times vanish, i.e. t0 ¼ 0 ¼ t1 so that t0 ¼ t00 ¼ t1 ¼ io�1 consequently,
Eq. (24) reduce to

a2
1 þ a2

2 þ a2
3 ¼ 1þ G2 þ

1

d2
1þ G2
� �

þ io�1 1þ eT þ
RH

d2eH

	 

;

P
a2
1a

2
2 ¼

1þ G2

d2
þ io�1 1þ G2 þ

1þ G2 þ eT

d2
þ

RH

eHd2

	 

�

o�2RH

d2eH

;

a2
1a2

2a
2
3 ¼

io�1

d2
1þ 1þ G2

� �
io�1

RH

eH

þ G2

	 
� 

:

(34)

Sub-case: When the rotation is absent (G ¼ 0), we have

a2
1 þ a2

2 þ a2
3 ¼ 1þ

1

d2
þ io�1 1þ eT þ

RH

d2eH

	 

;

P
a2
1a

2
2 ¼

1

d2
þ io�1 1þ

1þ eT

d2
þ

RH

eHd2

	 

�

o�2RH

d2eH

;

a2
1a

2
2a2

3 ¼
io�1

d2
1þ io�1

RH

eH

� 

:

(35)
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The wave propagation in the plate is governed by the secular equations (27) and (28) with reduced values of
the characteristic roots m2

i ¼ 1; 2; 3 in these equations.
5.2. Magneto-elasticity

In case of uncoupled thermoelasticity (magneto-elasticity) the thermomechanical coupling constant AT ¼ 0,
which leads to m2

2 ¼ t0c2 � 1 and m2
1;m

2
3 are given by

m4 � a2 þ b2 þ io�1c2
RH

eH

	 

m2 þ a2b2H � G2c4 ¼ 0 (36)

Sub-case: In the absence of rotation (G ¼ 0), we have

m4 � a2 þ b2 þ io�1c2
RH

eH

	 

m2 þ a2b2H ¼ 0. (37)

Consequently, the secular equations are given by the equations

T1

T3

� 
�1
�

D024G4

D021G1

T4

T3

� 
�1
¼

D023G3

D021G1
, (38)

where

G1 ¼ D14D33T�13 ; G3 ¼ D14D31T�11 ;

G4 ¼ D11D33T�13 �D13D31T�11 ;

D01q ¼ mqV 2q þ 1� 2d2 þ iR�V 3q; q ¼ 1; 2; 4;

D3q ¼ V 3qT�1q þ i
RH

R̄H

V4q:

(39)

5.3. Generalized thermoelasticity

In the absence of magnetic field Eqs. (30) and (31) reduce to

T1

T3

� 
�1
�

m2 1� a2
1

� �
m1 1� a2

2

� � T2

T3

� 
�1
¼
� b2 � 1
� �2

a2
1 � a2

2

� �
4bm1ð1� a2

2Þ
, (40)

T1

T3

� 
�1
�

m1 1� a2
1

� �
m2 1� a2

2

� � T2

T3

� 
�1
¼
�4bm1ða

2
1 � a2

2Þ

b2 � 1
� �2

1� a2
2

� � , (41)

where T1 ¼ tan(m1d), T2 ¼ tan(m2d), T3 ¼ tan(m3d).
In Eq. (40) m2

3 ¼ b2 and the other two roots are given by the equation

m4 � a2 þ g2 þ ioc2eTt1t00
� �

m2 þ ða2g2 þ ioc2eTt1t0Þ ¼ 0; g2 ¼ t0c2 � 1. (42)

Eqs. (40) and (41) are the same as obtained and discussed by Sharma et al. [30] and Sharma and Singh [31].
Eq. (33) in uncoupled theory (eT ¼ 0) and Eq. (31) in the absence of magnetic field reduce to the classical

case in elastokinetics as given below

tan ad

tan bd
¼ �

b2 � 1
� �2

4ab

" #�1
. (43)

Eq. (43) is the Rayleigh–Lamb frequency equation and has already been discussed in detail by Graff [32] and
Achenbach [33].
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6. Regions of the secular equations

Here depending on whether m1,m3,m5 being purely imaginary or complex, the frequency Eqs. (30) and (31)
are correspondingly altered as follows.

Region I: When the characteristic roots are of type m2
k ¼ �m02k; k ¼ 1; 3; 5; which implies that mk ¼ im0k is

purely imaginary or complex number. This ensures that the superposition of partial waves has the property of
‘‘exponential decay’’. In this case the secular equations are written from Eqs. (30) and (31) by replacing
circular tangent functions of mk, k ¼ 1,3,5 with hyperbolic tangent functions of m0k, k ¼ 1; 3; 5.

Region II: In case two of the characteristic roots are of the type m2
k ¼ �m02k; k ¼ 1; 3; then the frequency

equation can be obtained from Eqs. (30) and (31) by replacing circular tangent functions of mk, k ¼ 1,3 with
hyperbolic tangent functions of m0k, k ¼ 1, 3.

Region III: In the general case the roots m2
k; k ¼ 1; 3; 5 are complex numbers, and then the frequency

equation is given by Eqs. (30) and (31).
7. Thin plate results

When the transverse wavelength with respect to thickness is quite large xd51, regions I and II yield the
results of interest in this case. In region I, the symmetric case has no roots. For skew symmetric case on
retaining the first two terms in the expression of hyperbolic tangents the secular equation reduces to

F �
g03

3
G ¼ 0, (44)

where

F ¼ D21G�1m01 �D22G�2m02 þD23G�3m03 �D24G�4m4;

G ¼ D21G�1m031 �D22G�2m032 þD23G�3m033 �D24G�4m034; g0 ¼ xd:

Here

G�1 ¼ D�33 D12V54 �D14V52ð Þ �D�32 D13V 54 �D14V 53ð Þ;

G�2 ¼ D�33 D11V54 �D14V51ð Þ �D�31 D13V 54 �D14V 53ð Þ;

G�3 ¼ D�32 D11V54 �D14V51ð Þ �D�31 D12V 54 �D14V 52ð Þ;

G�4 ¼ D�32 D12V53 �D13V51ð Þ �D�31 D13V53 �D13V52ð Þ þD�33 D12V51 �D11V52ð Þ;D�3q ¼ V 3q þ i
RH

R̄H

T�1q :

In the absence of magnetic effects the equations for thin plate results reduce to that of thermoelasticity and are
given below:

Isothermal plate (H*-N): In this case Eq. (38) provides us

a02 �
b02 þ 1
� �2

4
¼

g02

3
m0

2
1 þm0

2
2

� �
a02 �m0

2
1m0

2
2 �

b02 þ 1
� �

2

4
b02

2
4

3
5,

which further implies that

c ¼ 2d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p
1þ

1

12
g2F�

� 

; F� ¼ 1� 4d4ð1� ioeTt1t00. (45)

Thermally insulated plate (H*-N): In case of thermally insulated boundaries of the plate Eq. (38) leads to

b02 � 1
� �2

þ
4

3
g02b04 �

a02g02

3
b02 þ 1
� �2

¼ 0,

where b02 ¼ 1�
c2

d2
:
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This upon discarding the terms of order higher than c4/d4, leads to

c ¼ 2dg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2
� �

3

s
. (46)

This result, with linear dependence of c on g agrees with that derived from classical plate theory in
elastokinetics [32,33] and of course pertains to the flexure vibration and represents only single vibrational
modes in limited frequency range in the overall frequency spectrum. No effect of thermomechanical coupling
has been observed on thin plates in this case.

In region II the antisymmetric case has no roots and for symmetric case only first term is retained in the
expansion of tangents and hyperbolic tangents. Therefore, in region II the thin plate results for stress free
isothermal plate are given by equation

D21G1m01 �D22G2m02 þD23G3m3 �D24G4m04 ¼ 0. (47)

In the absence of magnetic effect the secular equation (47) for thin plate results reduce to that of
thermoelasticity as below:

Isothermal plate (H*-N): In case of plate with isothermal boundaries, we have

b2 � 1
� �2

¼ 4b2,

which further implies that

c ¼ 2d 1:707; 0:2929ð Þ
1=2. (48)

Thermally insulated plate (H*-N): For plates with thermally insulated boundaries, we have

a02 �m0
2
1 �m0

2
2 ¼

4m021m
02
2

b2 þ 1
� �2 ,

which implies that

c ¼ 2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

d2

1þ eT

P

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Q

P2

r !( )vuut , (49)

where

P ¼ 1þ
1

4io�1d2 1þ eT � d2
� � ; Q ¼

1� d2 1þ eTð Þ

io�1d2 1þ eT � d2
� � ,

Thus the phase velocity is given by c ¼ 2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2= 1þ eTð Þ

q
, which is the thin plate or plane stress analogue of

the bar velocity of longitudinal rod theory. In general, here the wave mode depends upon the thermoelastic
coupling parameter, whose phase velocity is given by Eq. (49). Thus in the case of thin plates fundamental
symmetric mode S0 becomes dispersionless, the phase velocity is equal to the group velocity

� 2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2= 1þ eTð Þ

q	 

. The fundamental skew symmetric (A0) mode meanwhile becomes the flexural or

bending wave of the plate with its phase velocity. For a thin plate, A0 mode is essentially a transverse mode,
i.e. the z-component of the displacement dominates. While on the contrary in case of S0 mode x-component
dominates.

8. Waves at short wavelength

D0011G01 �D0012G02 �D0014G04 þD0013G03 ¼ 0, (50a)

D021G01 �D022G002 �D024G004 þD0023G003 ¼ 0, (50b)
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where

G01 ¼ D033 D22V 54 �D24V 52ð Þ �D032 D21V 54 �D24V 51ð Þ,

G02 ¼ D033 D21V 54 �D24V 51ð Þ �D031 D23V 54 �D24V 53ð Þ,

G03 ¼ D032 D21V 54 �D24V 51ð Þ �D031 D22V 54 �D24V 52ð Þ,

G04 ¼ D032 D21V 53 �D23V 51ð Þ �D031 D22V 53 �D23V 52ð Þ þD033 D21V 52 �D22V 51ð Þ,

G001 ¼ D032 �D044D13 þD043D13 þD043D14

� �
þD033 D044D12 �D042D14

� �
,

G002 ¼ D031 �D044D13 þD043D14

� �
þD033 D044D11 �D041D14

� �
,

G003 ¼ D031 �D12D044 þD14D042
� �

þD032 D11D044 �D14D041
� �

, ð51Þ

G004 ¼ D031 �D12D044 þDD042
� �

�D032 D11D043 �D13D041
� �

þD033 D11D042 �D12D041
� �

. (52)

D00pq can be obtained from Dpq by replacing a, mj, j ¼ 1,2,3 and a0, m0j, j ¼ 1,2,3.
In case of magneto-elasticity Eq. (50) reduce to

D0011G�1 �D0014G�4 þD0013G�3 ¼ 0;

D0021G�1 �D0024G�4 þD0023G�3 ¼ 0;

G�1 ¼ D24D023; G�3 ¼ D24D031; G�4 ¼ D21D033 �D23D031

(53)

where D03q ¼ V 3q þ R�HV4q, D04q ¼ m0qV 5q; q ¼ 1,2,3,4.
In the absence of magnetic affects the Eqs. (50a) and (50b) reduce to

2�
c2

d2

	 
2

m0
2
1 þm01m

0
2 þm0

2
2 � 1þ c2

h i
¼ 4b0m01m02ðm01 þm02Þ

for thermally insulated plate and

2�
c2

d2

	 
2

ðm01 þm02Þ ¼ 4b0ðc2 � 1þm01m
0
2Þ

for isothermal surfaces of the plate.
These are merely Rayleigh surface wave equations. The Rayleigh results enter here since for such small

wavelengths, the finite thickness plate appears as a half-space. Hence vibration energy is transmitted mainly
along the surface of the plate [32,33].

9. Amplitudes of displacement, temperature change, electric and magnetic fields

The amplitudes of displacement, magnetic field and temperature change during symmetric mode of
vibration are obtained as

u1 ¼ c01 þ Lc02 þMc03 þNc04
� �

A1 exp ix x1 � ctð Þ½ �, (54)

u2 ¼ V 21s01 þ LV 22s02 þMV 23s03 þNs04
� �

A1 exp ix x1 � ctð Þ½ �, (55)

h1 ¼ V31c01 þ LV32c02 þMV33c03 þNV 34c04
� �

A1 exp ix x1 � ctð Þ½ �, (56)

h2 ¼ V 41s01 þ LV 42s02 þMV43s03 þNV 44s04
� �

A1 exp ix x1 � ctð Þ½ �, (57)

T ¼ V 51c01 þ LV 52c02 þMV 53c03 þNV 54c04
� �

A1 exp ix x1 � ctð Þ½ �. (58)
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Here

L ¼
s1

s2

D23 D34D41 �D31D44ð Þ �D24 D33D41 �D43D31ð Þ þD21 D33D44 �D34D43ð Þ

D22 D33D44 �D43D34ð Þ �D23 D32D44 �D42D34ð Þ þD24 D32D43 �D42D33ð Þ

� 

;

M ¼
s1

s3

D22 D34D41 �D31D44ð Þ �D21 D34D42 �D44D32ð Þ þD24 D31D42 �D32D41ð Þ

D22 D33D44 �D43D34ð Þ �D23 D32D44 �D42D34ð Þ þD24 D32D43 �D42D33ð Þ

� 

;

N ¼
s1

s4

D22 D31D43 �D33D41ð Þ �D23 D31D42 �D32D41ð Þ þD21 D42D33 �D32D43ð Þ

D22 D33D44 �D43D34ð Þ �D23 D32D44 �D42D34ð Þ þD24 D32D43 �D42D33ð Þ

� 

;

(59)

D3q ¼ V 3qT�1q þ i
RH

R̄H

V 4q; D4q ¼ mqV 5q;

sq ¼ sin xmqd
� �

; cq ¼ cos xmqd
� �

; s0q ¼ sin xmqx2

� �
; c0q ¼ cos xmqx2

� �
:

The amplitudes of displacement magnetic field and temperature change during skew symmetric mode of
vibration are obtained by replacing L, M, N with L0, M0, N0, Aq with Bq, sq with cq and c0q with s0q in Eqs.
(54)–(58). These quantities in other cases of thermoelasticity can be obtained by making suitable substitutions
in relavent equations.

10. Numerical results and discussion

In this section the dispersion curve obtained from secular equation (30) and amplitudes of displacement,
magnetic field and temperature change given in Eqs. (54)–(58) are computed numerically for carbon steel
material for which the physical data is given below [14]:

l ¼ 9:3� 1010 Nm�2; m ¼ 8:4� 1010 Nm�2; r ¼ 7:9� 103 kgm�3; T0 ¼ 293:1K;

eT ¼ 0:34; CV ¼ 6:4� 102 J kg�1 deg�1; K ¼ 50Wm�1 K�1; at ¼ 13:2� 10�6 deg�1;

s ¼ 5:9� 106O�1 m�1; H3 ¼ 1:0Am�1; m0 ¼ 1:3� 10�6Hm�1:

The secular equation (30) is solved numerically by iteration method to obtain the phase velocity of symmetric
and antisymmetric modes of vibrations after finding the characteristic roots. The cubic equation satisfied by
m2

i , i ¼ 1,2,3 is solved by using reduced Cardan’s method. In general the cubic equation satisfied by m2
i can be

written as G(m,V) ¼ 0 which can be solved for ‘m’ for fixed values of V by Cardan’s method. The secular
equation (30) is transcendental equations of the form F(V,m) ¼ 0. For known values of m this equation can
also be solved for the phase velocity v. We have used iteration method to find the phase velocity and
attenuation coefficients for different values of the wavenumber R. The adopted procedure is outlined below.

The iteration method to solve a transcendental equation f(V) ¼ 0, requires to put this equation into the
form V ¼ g(V), so that the sequence {Vn} of iteration for the desired root can be easily generated as follows: if
V0 be the initial approximation to the root, then we have V1 ¼ g(V0), V2 ¼ g(V1), V3 ¼ g(V3), and so on. In
general Vn+1 ¼ g(Vn), n ¼ 0,1,2,3y . If g0ðV Þ

�� ��� 1, for all VAI, then the sequence {Vn} of approximations to
the root will converge to the actual value V ¼ z of the root, provided V0AI, I being the interval in which root is
expected. For initial value of V ¼ V0AI, Eq. (22) can be solved for m by Cardan’s method for a particular
value of the non-dimensional wavenumber Rd. The values of m are then used in the secular equation to obtain
a current value of V, which is further used to generate a new approximation to V. This process is repeated time
and again for a particular value of the wavenumber Rd unless the sequence of iterated approximations to the
value of V converges to desired level of accuracy, i.e. |Vn+1�Vn|oe, e being arbitrary small number to be
selected at random in order to achieve the accuracy level. This procedure is continuously repeated for different
values of the non-dimensional wavenumber Rd to obtain the phase velocity. Here the sequence of the values of
phase velocity has been allowed to iterate approximately for 100 iterations to make it converge in order to
achieve the desired level of accuracy, viz. four decimal places here. An infinite number of roots exist for a given
value of frequency, which can be obtained by giving a value of wavenumber, from the secular equation (30).
Each root represents a propagating mode. Note that care must be taken in the root finding procedure, for the
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transcendental functions change their values rapidly. The phase velocity profiles of first four symmetric and
antisymmetric modes of vibrations have been computed for various values of the non-dimensional
wavenumber (Rd) from dispersion relation (30) in case of stress free, thermally insulated plate of carbon
steel material. The corresponding dispersion curves and attenuation profiles for Rayleigh–Lamb type modes in
case of rotating and non-rotating media are presented in Figs. 1 and 2 for symmetric and skew symmetric
modes, respectively. The amplitudes of displacement, temperature change and perturbed magnetic field in case
of fundamental mode for rotating and non-rotating plates have also been computed for stress free thermally
insulated plate which are plotted with plate thickness in Figs. 3–6.

From Figs. 1a and 2a, it is observed that the phase velocity of fundamental symmetric and skew symmetric
modes remains constant with variation in wavenumber in case of rotating plate indicating that this mode of
wave propagation is dispersionless and hence phase velocity equals group velocity. The phase velocity of
fundamental skew symmetric mode has non-zero constant value for rotating plates, where as it is noticed to be
zero in case of non-rotating plate at the vanishing wavenumber and increases sharply with non-dimensional
wavenumber and ultimately tends to Rayleigh wave velocity at large wavenumbers. The effect of rotation is
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Fig. 2. (a) Dispersion curves for skew symmetric mode of wave propagation in a plate with stress free thermally insulated boundaries; (b)

Variation of attenuation coefficient for skew symmetric mode of wave propagation in a plate with stress free thermally insulated
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clearly observed in the instant case because of which the skew symmetric acoustic mode becomes
dispersionless here. The velocity of higher symmetric and skew symmetric modes of wave propagation
decreases exponentially for small values of the wavenumber and asymptotically approaches Rayleigh wave
speed at higher wavenumbers in the context of various theories (CT, GL, and LS) of thermoelasticity. The
effect of thermal relaxation is observed to be negligibly small on dispersion curves. The asymptotic closeness
of various modes of wave propagation to Rayleigh wave velocity at higher wavenumbers establishes the fact
that at small wavelength the finite thickness plate appears as a half-space and that the vibration energy is
transmitted mainly along the surface of the plate. The free surfaces admit a Rayleigh-type surface wave with
complex wavenumber and hence phase velocity. Consequently, the surface wave propagates with attenuation
due to radiation of energy into the medium. This radiated energy will be reflected back to the center of the
plate from lower and upper surfaces. Consequently, the attenuated surface wave on the free surface is
enhanced by this reflected energy to form a propagation wave. In fact, the multiple reflections from upper and
lower surfaces of the plate form caustics at one of the free surface and a strong stress concentration arises due
to which wave field becomes unbounded in the limit d-N. The unbounded displacement field is characterized
by singularities of the circular tangent functions.

The attenuation of various modes of propagation has also been computed and represented graphically in
Figs. 1b and 2b for symmetric and skew symmetric cases, respectively. For rotating plate attenuation is very
small and almost constant in case of skew symmetric mode. It means signal or wave can go for large distances
without attenuation. This explains why the skew symmetric mode for thin rotating plate is the choice for
biosensing applications in nuclear magnetic resonance (NMR), magnetic resonance imaging (MRI) and echo
planer imaging (EPI). MRI has become very important in diagnosis treatment and follow-up of various
diseases like cancer, brain tumor and a valuable tool for radiotherapy. It is observed from Figs. 3a and b that
the phase velocity increases initially to attain its maximum value and then again starts decreasing with increase
in rotation of the plate. This can be explained by the fact that as the rotation of the plate increases, the
coupling effect of various interacting fields also increases resulting in lower phase velocity. It is noticed that as
the thickness of the plate increases, the phase velocity decreases. It can also be observed that the Rayleigh
wave velocity is reached at lower wavenumber as the thickness increases, because the transportation of energy
mainly takes place in the neighborhood of the free surfaces of the plate in this case.

The magnitude of non-dimensional amplitudes of displacement, perturbed magnetic field and temperature
change in a stress free and thermally insulated plate have also been computed and are shown graphically in
Figs. 4–6 for different values of the plate thickness. It is clear from Fig. 4a that the behavior of x1-component
of symmetric displacement amplitude (u1sym) becomes oscillatory because of rotation effect in contrary to the
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non rotating plate. This quantity has maximum amplitude at the center of the plate which decreases with
increase in plate thickness and the oscillatory nature almost vanishes at d-7N showing damping effect.
Damping effect becomes more and more prominent with increase in plate thickness. The maximum
displacement amplitude at center of the plate is very important from practical point of view for maintaining
resonance conditions. From Fig. 4b the amplitude of skew symmetric displacement (u1asy) is observed to be
quite large at plate surfaces and zero at the center of the plate. The comparison of Figs. 4a and b reveals that
symmetric displacement is dominant as compared to skew symmetric one in case of non-rotating plate while
this trend get reversed in case of rotating plate. The behavior of z-component of symmetric displacement
(u2sym) is observed to be similar to that of skew symmetric x-component of displacement (u1asy) and the skew
symmetric displacement (u2asy) follows the trend of symmetric displacement (u2sym) in rotating as well as non-
rotating plates. The behavior of the amplitudes of perturbed magnetic field and temperature change are almost
similar to that of displacement except that they differ in magnitude in case of non-rotating plate. However, the
behavior of these quantities is oscillatory and same for rotating plates with the exception of varying
magnitude. The trends of x2-components of symmetric and skew symmetric perturbed magnetic field are
found to be similar to that of skew symmetric and symmetric x1-component in case of rotating and non-
rotating plates. The magnitude of perturbed magnetic field gets suppressed in the presence of rotation for
symmetric and skew symmetric vibrations. The displacement amplitudes remain almost close in all the theories
of thermoelasticity, however a significant departure is observed in case of perturbed magnetic field and
temperature change, although not plotted here. The temperature change is observed to be large in CT as
compared to that in GL and LS theories of thermoelasticity. The perturbed magnetic field is observed to be
amplified in case of GL and LS theories as compared to that in CT. Hence effect of relaxation time is quite
significant on magnetic and thermal fields whereas it is negligible in case of displacement amplitudes.

11. Conclusions

The propagation of electromagnetic-thermoelastic plane waves in an initially unstressed, homogeneous
isotropic, conducting plate under uniform magnetic field has been investigated in the context of generalized
theory of thermoelasticity. The plate is rotating with uniform angular velocity normal to its faces. The
magneto-elastic SH mode of wave propagation decouples from rest of the motion and is not influenced by
thermal variations and thermal relaxation times. At short wavelength limits the secular equations for
symmetric and skew symmetric modes reduce to Rayleigh surface wave frequency equation, because a finite
thickness plate in such a situation behaves like a semi-infinite medium. The dispersion curves, attenuation
coefficients, amplitudes of displacement, perturbed magnetic field and temperature change are computed and
shown graphically for various modes of wave propagation in different theories of thermoelasticity in case of
carbon–steel material plate. The numerically computed results are found to be significantly in agreement with
the corresponding analytic results. Although the effect of relaxation time is observed to be quit small in phase
velocity, but significant effect is observed in amplitudes of perturbed magnetic field and temperature change.
The secular equation has been discussed under different situations in case of various classical and non-classical
theories of thermoelasticity. The analysis carried out will be useful in the design and construction of rotating
sensors and other surface acoustic wave (SAW) devices in addition to possible biosensing applications.
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